1.	In an arithmetic series					
	 the first term is 16 the 21st term is 24 					
	(a) Find the common difference of the series.	(2)				
	(b) Hence find the sum of the first 500 terms of the series.	(2)				

ii) James saves money over a number of weeks to buy a printer that costs £64. He saves £10 in week 1, £9.20 in week 2, £8.40 in week 3 and so on, so that the weekly amounts he saves form an arithmetic sequence. Given that James takes n weeks to save exactly £64. (a) show that $n^2 - 26n + 160 = 0$ (b) Solve the equation $n^2 - 26n + 160 = 0$ (c) Hence state the number of weeks James takes to save enough money to buy the printer, giving a brief reason for your answer.	(3) (2)
weekly amounts he saves form an arithmetic sequence. Given that James takes n weeks to save exactly £64 (a) show that $n^2 - 26n + 160 = 0$ (b) Solve the equation $n^2 - 26n + 160 = 0$ (c) Hence state the number of weeks James takes to save enough money to buy the	
weekly amounts he saves form an arithmetic sequence. Given that James takes n weeks to save exactly £64 (a) show that $n^2 - 26n + 160 = 0$ (b) Solve the equation $n^2 - 26n + 160 = 0$ (c) Hence state the number of weeks James takes to save enough money to buy the	
(a) show that $n^2-26n+160=0$ (b) Solve the equation $n^2-26n+160=0$ (c) Hence state the number of weeks James takes to save enough money to buy the	
$n^2 - 26n + 160 = 0$ (b) Solve the equation $n^2 - 26n + 160 = 0$ (c) Hence state the number of weeks James takes to save enough money to buy the	
(b) Solve the equation $n^2-26n+160=0$ (c) Hence state the number of weeks James takes to save enough money to buy the	
$n^2 - 26n + 160 = 0$ (c) Hence state the number of weeks James takes to save enough money to buy the	(1)
(c) Hence state the number of weeks James takes to save enough money to buy the	(1)
	(1)

3.	A sequence of terms	a_1, a_2, a_3, \dots	is defined by

$$a_1 = 3$$
$$a_{n+1} = 8 - a_n$$

- (a) (i) Show that this sequence is periodic.
 - (ii) State the order of this periodic sequence.

(2)

(2)

(b) Find the value of

$$\sum_{n=1}^{85} a_n$$

4. (a) Express $2 \cos \theta + 8 \sin \theta$ in the form $R \cos (\theta - \alpha)$, where R and α are constants,

$$R > 0$$
 and $0 < \alpha < \frac{\pi}{2}$

Give the exact value of R and give the value of α in radians to 3 decimal places.

(3)

The first three terms of an arithmetic sequence are

$$\cos x$$

$$\cos x + \sin x$$

$$\cos x + 2\sin x$$

$$x \neq n\pi$$

Given that S_9 represents the sum of the first 9 terms of this sequence as x varies,

- (b) (i) find the exact maximum value of S_9
 - (ii) deduce the smallest positive value of x at which this maximum value of S_9 occurs.

(3)